FINITE-DIFFERENCE SOLUTION OF CONJUGATE
HEAT-CONDUCTION PROBLEMS

L. S. Milovskaya and P. V., Cherpakov UDC 536.25

The nonlinear conjugate heat-transfer problem is solved by the method of finite differences. The
convergence of the resulting finite-difference scheme is analyzed.

Conjugate heat-transfer problems are receiving ever-increasing attention, The problems of liquid or gas
flow past a plate and of fluid flow in a pipe have very broad applications in engineering, and it is not surprising
that many attempts have been undertaken to find their solutions, An exhaustive bibliography on the topic may
be found in [1, 2]. The indicated processes are described by a system of partial differential equations, which
are of a variety of types. The problems turn out to be rather complex, and so mainly linear equations are dis-
cussed in the cited papers. In the present study we pose the problem of heat propagation in bodies with dif-
ferent temperature-dependent thermal conductivities, The problem is solved by the method of finite differ-
ences, We construct a finite-difference scheme and analyze its properties.

Let us consider the problem
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§1, In the cylinder 0 = x =, 0 = p = R we construct a grid of circles pj = ih, where R = Nh, Ry = N;h,
and the straight lines xx = k7, k=0,1,..., i.e., the lines Xk = kT intersect the inner wall p =R only at nodes
of the grid.

We use the following approximation of the derivatives:
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At points of the common boundary p = R we approximate condition (8) with regard for condition (7):
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Inasmuch as heat transfer takes place in the p and x directions and does not depend on the polar angle ¢,
it is sufficient to carry out the analysis in one cross section ¢ = const, i.e., in the rectangle D: 0 < p < Ry,
0 = x = ! with a cut along the line of discontinuity p = R.

The set of grid points belonging to D is denoted by Dh. We obtain the following difference problem ap-
proximating (1)-(9) with order h + 7:
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§2. We investigate the convergence of the solution of the difference problem (15)-(19) to the solution of
problem (1)-(9). We denote by €i k the difference between the exact solutions of praoblem (1)-(9) U(ej, xk) and

15)-Q9)
(20)
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We substitute (20) into (15)-(19) and expand the coefficients into series in powers of £j k. Using (10)-(14), we

obtain a system for the determination of
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The system of equations (21) can be written in the abbreviated form
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Invoking the principle of frozen coefficients, we calculate the coefficients &;_; Jo Ei+1ks Ejk+1s Ef k-1 Eik
at a certain fixed point, Then problem (22) becomes linear. Let us estimate its solution. To do so we verify
that if
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at interior points of the grid domain Dy, then the maximum (minimum) value of V is attained at the boundary.

We assume that the foregoing assertion is false and that the maximum is attained at interior points of the
computing grid, We select from these points the one at which the coordinate p is largest. Let that point be
(Pm>» Xn). We write AV at this point in the form

AV =A (Vm-i.n - Vm.n) — B (Vm_l,n - Vm.n) - C (Vm.m.i - Vm,n) = D (Vm.n_i - V,,,',,).
The first expression in parentheses is strictly less than zero, and all others are =0, Consequently, AV < 0,
contradicting condition (23). From this verification we arrive at the maximum principle for the solutions of

the equations AV = 0: All solutions of the equation AV = 0 attain their maximum and minimum values at the
boundary of the domain,

Returning to the difference operators Ay, Ay, Az, we see that A, has the same form as A. It follows
from (21) that C = 0 and D = 0 for A, and that C = 0 for the operator Aj,

Hence, the maximum principle holds for the difference operator A;,. We show that the solution €i,k
of problem (22) satisfies the condition
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with i = Ny, arbitrary k; arbitrary i, k = 0; or arbitrary i, k = K the following bound has been obtained [3]:
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where the coefficients My, M,, M; are independent of h and 7. In our case oy = 0, Bik=0,9ik =0 + 7).
Using (24), we obtain

(el =00+ e
0 R K
Estimate (25) has been obtained on the assumption that the coefficients are calculated at a fixed point.
Since (25) is valid at all points of the domain Dy, the principle of frozen coefficients implies convergence of
the solution of the difference problem (15)-(19) to the solution of the differential problem (1)-(9) with order
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h + 7 in Dy, The order of the system of difference equations (15)-(19) is equal to the number of grid nodes,
i.e., N\ XK,

The system cannot be partitioned into K independent subsystems as in the solution of the heat-conduc-
tion problem, due to the elliptical character of the differential equation in the annulus R < p < Ry, Methods
for the solution of systems of the type (15)-(19) are described in adequate detail in [4]. We therefore omit
any discussion of the algorithms for solution of the system of difference equations,

§3. In stating the conjugate problem (1)-(9) we have considered all the initial data for the problem to be
known. It is only required to determine the temperature at the cylinder walls and in its interior, It is also
important to consider conjugate problems in which, along with the temperature field, it is also required to de-
termine the strength of a source in the interior or at the wall of the cylinder, the magnitude of a heat-flux
jump, etc. We discuss one case of degeneracy of problem (1)-(9), We assume that at the cylinder wall heat
transfer takes place only in the radial direction. This constraint will have a certain effect on the heat flux
inside the cylinder. It is necessary to determine the temperature in the interior and at the wall of the cylin-
der as well as the heat-flux jump across the inner wall of the cylinder p =R, We state the problem
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We seek a continuous function U{p, x) that is a solution of problem (26) and a function ¥(x), continuous in
the domain x€[0, ], such that (26) has a solution. Demanding satisfaction of the matching condition at the
boundary p, we obtain

Ui (R, x) = U (R) = ¢ (R).

We form a difference scheme by analogy with the procedure in §1:
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In the fourth equation of the system (27) neither the coefficients nor the unknown function depend on x or, hence,
on k, and this index is written to unify the notation.

In the domain Dy, we obtain a system of Ny X K difference equations in Ny X K unknowns:

W, k=1,... K U, i=01 ..., N—1 k=1,..., K

Uy, i=N=1, ..., N,
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As an illustration we examine the problem
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It is required to find U(p, x) and ¥(x). This problem has the known exact solution

Uy = V{150 + 1.5x(p — RP,
U, = V2R Tn (pIR) + (1.5)7P RT3, ¥ (x) = 0.

To find an approximate solution we use the difference scheme (27) with h = 0.1, 7 = 0,04, andR = 1. We have
carried out the numerical computation on a BESM-4 digital computer. We give the values of Yj k for K = 400:
Yok = 2.8843, Y, k = 2.4897, Y, k = 2.0715, Ygk = 1.6368, Yg k = 1.2431, Yyqk = 1.1442, Yy, k = 1.2920, Yy k=
1.4083, Yyq k = 1.5004, Y5 k = 1.5776, Yo,k = 1.6425. We have also made a comparison of the Yj | for K =
400 with the exact solution for x = 16, The error turns out to be not greater than 0,007,
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EFFECT OF A BIPERIODIC SYSTEM OF PLANE INCLUSIONS
ON A PLANE STEADY TEMPERATURE FIELD

I. M. Abdurakhmanov and B, G, Alibekov UDC 536.24,02

Determining the complex potential of a plane temperature field perturbed by a biperiodic system
of thin inclusions reduces to the solution of a singular integrodifferential equation.

__1. Suppose that a plane steady temperature field is perturbed by some finite system of cuts (lines) Iy,
n =1, N. Each line may be taken to be, e.g., a foreign inclusion (or crack) of sufficiently large extension
(relative to its width), the thermal conductivity kp of which differs from the thermal conductivity k of the basic
medium, taken to be the complex-variable plane z = x + iy, The set of all the lines I'| is denoted by I' = Iy +
...+In.

Consider the problem of finding the temperature field perturbed by inclusions, assuming that the tem-
perature in a homogeneous body (in the absence of inclusions) is determined by a given harmonic function T(x,
y) = Re F(z).

The complex potential of the perturbed temperature field W(t) = T + iy, where ¢ is the current function
associated with the temperature T, will be found as the sum of a given function F(z) and a Cauchy-type integral
of unknown density taken along the curve I’
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